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1. Introduction

We analyze theoretically how the possibility of requesting fee-based advance tax

rulings (ATRs) to mitigate tax uncertainty affects a firm’s optimal investment

decisions under both cash flow and tax uncertainty. Tax policy is often seen as an

important regulatory tool to stimulate risky investment by creating an attractive

environment (IMF 2017). While direct tax policy measures, such as loss offset

provisions, are expected to encourage risk taking (Ljungqvist et al. 2017; Bethmann

et al. 2018; Langenmayr and Lester 2018), politicians and tax practitioners often argue

that tax uncertainty damps investment (IMF and OECD 2019; IMF and OECD 2018);

see, for empirical evidence, for example, Edmiston 2004. Tax uncertainty is

multi-dimensional, as it might stem from tax policy debates and reforms or unclear

outcomes of tax audits. It also might be triggered by missing definitions for tax issues

of new business models, unclear definitions, and attributions or judgments regarding

the taxable income (profit or loss). Uncertain or unclear tax issues are likely to be

challenged during a tax audit and can lead to a higher post-audit tax burden.

Due to increasing tax complexity and tax uncertainty over recent years, firms and

governments are increasingly concerned (e.g., IMF and OECD 2019; Hoppe et al. 2021)

and have called for remedies. As one particular remedy, many countries offer ATRs to

mitigate tax uncertainty by providing upfront clarification of tax issues. Surprisingly,

although difficulty in applying ambiguous tax laws and anticipating the consequences

of a future tax audit has been highlighted in the literature (Mills et al. 2010; Lisowsky

et al. 2013; Neuman et al. 2020), only a few scholarly contributions have examined the

economic implications of rulings that are supposed to mitigate tax uncertainty (see

Diller et al. 2017 for ATRs and De Waegenaere et al. 2007, and Becker et al. 2017 for

advance pricing agreements). However, none of these studies accounts for the

multi-dimensional character of tax uncertainty and and how it affects risky

investments.

We aim to fill this void. We interpret tax uncertainty as tax payment uncertainty
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stemming from uncertainty in tax rates and tax bases, due to potential tax reforms,

unclear tax issues, and tax audits, and focus on ATRs as a common policy tool to

provide upfront clarification of unclear tax issues and mitigate multi-dimensional

uncertainty.

In many countries, tax authorities must issue ATRs by law or offer them

voluntarily to provide legal certainty (see Diller et al. 2017). An ATR is a statement

provided by the tax authority or an independent council with respect to the tax

treatment of a future transaction. The taxpayer can —at least to some extent—rely on

the ATR. According to OECD (2019), ATRs are widely available. Of the 35 OECD

countries, 33 allow ATRs.1

However, ATRs come at costs, so decision-makers must weigh these costs as well

as benefits when evaluating the after-tax payoffs from risky investments with or

without an ATR. We study how ATRs affect risky investments and how ATR fees

should be set. To capture that the taxation of profits and losses differs across

countries, we evaluate ATRs and their impact on investments under different tax

schemes with different tax rates and loss offset regulations.

Whether a firm requests an ATR to eliminate a project’s tax uncertainty depends

on many factors, including uncertainty about the taxes and pre-tax cash flows, ATR

fees, eligibility, and features of the tax system, such as loss offset provisions.2 Many

tax authorities charge a fee in return for offering taxpayers ATR certainty.3 However,

ATR fees vary considerably across countries and cases. In many countries, the fee

depends proportionally on the hours the tax officers spend for the underlying issue.

Some countries ask for upfront deposits; others have schemes with charges

progressively increasing with hours above a threshold4 or depend on the underlying

1The OECD report refers to data as of 2017. After 2017 three more countries joined the OECD
(Lithuania 2018, Colombia 2020, Costa Rica 2021). In OECD (2019), these countries are included
but labeled as non-OECD countries.

2For the relevance of losses in tax planning, see Dyreng et al. (2018), Henry and Sansing (2018).
3According to the OECD, 19 of the OECD countries and nine out 23 non-OECD countries charge

ATR fees. See OECD (2019), Annex A, Table A.120.
4For details, see Canada Revenue Agency (2021); Internal Revenue Service (2016); Internal Rev-

enue Service (2021); Inland Revenue Authority of Singapore (2019); South African Revenue Service
(2020); Starkman (2010), p. 21.
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turnover or value of dispute.5 Some countries limit maximum fees, while others do not.

Some countries also offer rulings free of charge.6 To capture that a country can design

and charge a fee, we model ATRs with and without fees and determine reasonable fee

ranges that benefit both the taxpayer and tax authority. In this vein, we determine the

crucial drivers of the fee, including the impact of tax system features, such as tax rate

level and loss offset provisions.

Even though tax uncertainty often arises in conjunction with risky investments

and ATRs aim to attenuate this uncertainty, the literature has largely overlooked the

implications of fee-based ATRs for risky investments. To fill this gap, we consider

R&D investments as an example of investments subject to both high cash-flow and tax

uncertainty. R&D is innovative by nature, and thus not only are its future cash flows

risky but, on top of this, routines for assessing its emerging tax issues are also lacking,

which redoubles the uncertainty. For example, the OECD initiative to fight base

erosion and profit shifting (BEPS, OECD 2013) has fueled tax reforms that affect

R&D investments. The OECD recommendations on how to reform the taxation of

digital businesses and intangibles (characteristics of many risky projects such as R&D

projects) are loaded with unclear terms, resulting from compromises among the

involved 139 countries.

These unclear definitions create high uncertainty, for example, regarding the

existence, location, and value of an intangible asset, such as intellectual property (IP)

from an R&D investment and the assignment of the resulting profits to a specific

country and thus tax regime. To illustrate the magnitude of the underlying

uncertainty, we refer to the example of the tax dispute between the US Internal

Revenue Service and Facebook, which was heard in the US Tax Court. The parties

disagreed about the valuation of intangible assets dating back to a tax return in 2010,

with the disputed tax being more than US$9 billion (White 2020). Clearly, such

conflicts impose significant uncertainty on corporations (Graham et al. 2014; Chen

5For details, see § 89 (5) 1 AO (German Fiscal Code), § 34 FGO (German Courts Fee Act); § 118 (10)
BAO (Austrian Fiscal Code).

6For example, France; see Deloitte (2021)
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et al. 2020; Neuman et al. 2020). In the face of budget challenges following the COVID

19 epidemic, competition on tax revenues across countries has further increased,

suggesting the possibility of an increase in number and intensity of disputes between

tax authorities and taxpayers (KPMG 2016; KPMG 2019; Nessa et al. 2020). As a

consequence, corporations will have difficulties in anticipating the tax burden from

their R&D investments without an upfront clarification from the tax authority. To

enable corporations to appropriately integrate the expected tax implications of R&D

investments in their decision-making, they might apply for an ATR.

We incorporate cash flow and tax uncertainty into a decision model developed by

Diller et al. (2017). Also, we account for tax system features, such as tax rates and loss

offset provisions. We assume that the profit from investments is subject to taxation

and that loss offsets are offered. While profits are taxed at a proportional tax rate,

many countries restrict loss offsets, at least to some extent. Under these restrictions,

losses can be used to offset profits generated in previous or future periods (loss

carrybacks and carryforwards), sometimes with additional limitations on amount and

time. Hence losses are either fully offset, leading to an immediate tax refund at the

profit tax rate, or refunded at a lower rate. Loss offset restrictions are common

features of many countries’ tax codes and prevent an immediate and complete tax

refund. Providing generous loss offsets is often considered an investment incentive.

Our approach allows us to capture the interaction of tax rates, loss offsets, and ATRs.

This enables us to consider how this interaction affects the propensity to employ an

ATR and make risky investments.

We analyze two research questions. First, we determine the optimal investment

strategies of a company within two frameworks, i.e., without and with an ATR. This

analysis enables us to investigate how the introduction of an ATR affects the optimal

amount invested in a risky investment, such as R&D, and specifically whether the

incorporation of the ATR induces firm risk taking. Second, we investigate how to set

reasonable ATR fees. We study this question both from the firm’s and tax authority’s

point of view, i.e. we determine the firm’s maximum willingness to pay for the ATR
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and the lowest fee level acceptable for the tax authority. An agreement on an ATR

between the two parties can only occur if the lowest acceptable fee is less than the

highest willingness to pay of the firm. These analyses may help tax authorities

establish the price range within which ATRs benefit themselves and firms.

Our model yields three main findings. First, we identify scenarios where an ATR

with a zero fee can still be attractive for tax authorities. Beyond nonnegative fees, as

deduced by Diller et al. (2017), we identify specific conditions under which tax

authorities may even want to pay for an ATR. If, for example, tax authorities offer

ATRs together with enhanced services to taxpayers, the resulting reduction in

taxpayers’ compliance costs can be interpreted as a negative ATR fee.

Second, we find interesting interactions between ATRs and the taxation of profits

and losses that explain the occurrence of negative fees. If a generous tax loss offset

policy is in place, the additional implementation of the ATR will enhance the incentive

for firms to make risky investments. By offering tax certainty via an ATR, the tax

authority has some discretion when fixing a relatively favorable or unfavorable

taxation, that is, in our model, a low or high ATR tax rate. To make the ATR

attractive, setting a relatively high (low) ATR profit (loss) tax rate must be offset with

a zero or even negative ATR fee.

Third, we examine how sensitive firms’ requests for ATRs are to their risk

aversion. We thus extend the work of Diller et al. (2017), who assume that firms base

their decisions on expected after-tax cash flows. In settings without or with the

implementation of the ATR, we find a more risk-averse firm invests less into risky

projects. However, we show the ATR influences investments by less risk-averse firms to

a larger extent. With its tax rate ensured through the ATR, the less risk-averse firm

will make riskier investments, expecting to be rewarded with a higher return. If a firm

is more risk-averse, the ensured tax rates matter less, and the firm will per se pursue a

less risky alternative investment. In this sense, we find that the reduction of risky

investments caused by an increase in risk aversion is less substantial for the case with

no ATR than for the case with an ATR. Surprisingly, we find that the willingness to
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pay for an ATR is non-monotone in the firm’s risk aversion.

Our analysis of ATR fees reveals a complex relationship between ATRs, tax

uncertainty, loss offset restrictions, and optimal investments. We thus contribute to

two streams of literature. First, we contribute to theoretical studies on the ambiguous

investment effects of taxes under cash flow uncertainty (e.g., Niemann and Sureth

2004; Alvarez and Koskela 2008; Gries et al. 2012; Kanniainen and Panteghini 2013)

and tax uncertainty (Agliardi 2001; Niemann 2004; Niemann 2011). Several theoretical

analyses find that uncertainty about tax policy hinders investments under specific

conditions (see Sialm 2006; Niemann 2011). Further, anecdotal and empirical evidence

indicates that tax uncertainty attenuates investments (Jacob et al. 2021) and

risk-taking (Dharmapala and Hines 2009; Osswald and Sureth-Sloane 2020). However,

all of these analyses abstract from the possibility of acquiring a tax uncertainty shield.

Therefore we also contribute to the literature on tax uncertainty shields. Among

the few studies of ATRs, Givati (2009) analyzes taxpayers’ strategic consideration of

whether to request an ATR. He shows that the strategic disadvantages, such as

increased inspection and risk of detection by tax examiners, outweigh benefits, such as

avoidance of penalties. Relatedly, De Simone et al. (2013) study the implications of

“enhanced relationship tax compliance programs” on optimal reporting and auditing.

Under such a program, taxpayers disclose uncertain tax positions to the tax authority

in exchange for a timely resolution. The authors identify settings under which these

programs can reduce taxpayers’ compliance cost and the tax authority’s audit costs.

Relatedly, research on advance pricing agreements, i.e., international bilateral or

multilateral agreements between a taxpayer and a tax authority to reduce tax

uncertainty, indicates that these agreements might increase compliance cost

(De Waegenaere et al. 2007; Becker et al. 2017). However, none of these studies

examines how tax-uncertainty shields and fee design affect firms’ investment decisions.

Diller et al. (2017) propose a discrete-time model to investigate an investor’s

willingness to pay for an ATR and how this translates into investments. Absent of

other sources of uncertainty, like cash flow uncertainty, they assume that tax
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authorities integrate firms’ reasoning into their decisions. They find that, in special

cases, the optimal fee tax authorities should charge is prohibitively high, and thus

firms will not request ATRs. Further, they show that ATRs under specific

circumstances might foster investments.

All these studies focus on symmetric taxation of profits and losses. We extend

their model and broaden the underlying scope of tax uncertainty. We introduce

uncertain cash flows and account for risk aversion. Further, as risky investments are

often characterized by (temporary) loss periods, we model loss offset restrictions to

capture the typically asymmetric nature of the taxation of profits and losses and how

this asymmetry interacts with tax uncertainty and the availability of an ATR. In a

continuous-time setting, we allow for both stochastic pre-tax cash flows and tax

uncertainty from tax reforms and tax audits. We investigate whether the

implementation of an ATR will increase risky investments and increase the riskiness of

firms’ assets. We determine the “optimal fee” for the ATR, both from the firm’s and

the tax authority’s point of view and thus identify conditions under which the tax

authority and the firm can agree on an ATR. We further examine how this translates

into risky investments.

We enhance extant optimal asset allocation models and exploit their

continuous-time nature to derive closed-form solutions for an ATR design that benefits

both the tax authority and the firm under multi-dimensional tax uncertainty.7

Our results also enhance the understanding of tax policy measures that may spur

investments and highlight the crucial role of tax certainty and ATRs in optimal

corporate investment strategies. We find that ATRs contribute to an attractive tax

environment. Our model predicts that ATRs can alleviate the harms of tax

uncertainty, foster investment, and amplify the risk-taking incentives of other tax

7In the optimal asset allocation literature, only the effect of stylized tax regulations, for example,
proportional tax rates, has been studied. Yet the effects of more complex tax regulations with loss
offset restrictions, tax uncertainty, and advance tax rulings have not been analyzed. So Seifried
(2010) and Chen et al. (2019) study utility maximization problems of after-tax payoffs for a simple
proportional tax rate on the return from banking and life insurance products. Our study advances the
theoretical literature on optimal asset allocation by incorporating more sophisticated tax regulations
and ATRs.
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policy measures, such as loss offsets. However, these effects substantially depend on

the chosen profit and loss tax rates and the ATR fee. These findings should help tax

authorities better understand how firms respond to the taxation of risky investments

and consequently how to assess and design tax policies. Specifically, our results can

help them set reasonable fees for ATRs. Ultimately, as our study is theoretical with

supporting numerical examples, our predictions on fee-dependent investment effects of

tax certainty will need to be tested in future research. The implications are also

interesting for firms, as our work suggests ways for them to make better asset

allocation decisions by accounting for both taxes and legislative, administrative, and

judicial tax uncertainty.

2. Model Setup, Investment Strategy, and Tax
Procedures

We introduce the investment problem and the underlying financial market under two

alternative tax procedures, that is, with and without an ATR. In a first step, an

investor (a firm) wants to decide on how much to invest in a risky investment such as

R&D. We solve for the optimal investment amount from the firm’s perspective in both

settings and, in a second step, determine reasonable fee ranges for the ATR and

thereby incorporate the tax authority’s decision on the ATR fee that anticipates the

firm’s decision making process.

2.1. Optimal Investment Amount

Investment strategy

We consider a time horizon [0, T ], T <∞, and a fixed filtered probability space

(Ω,F , {Ft}t∈[0,T ],P). The firm is endowed with an initial wealth X0 and can invest in

(1) a risk-free government bond Bt := ert that accrues at the constant, risk-free interest

rate r and (2) a risky investment project (e.g., R&D), whose value evolves according to

the following stochastic process
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dSt = St (µ dt+ σ dWt) , S0 > 0 is given,

where µ, the rate of return on the risky project, and σ, the volatility with µ, σ > 0, are

constants and W denotes a standard one-dimensional Brownian motion under the real

world measure P. The Brownian motion is adapted to the filtration F . We assume

that the rate of return on the risky project exceeds the risk-free rate r, i.e., µ− r > 0.

The risk-free rate r can be interpreted as post-tax rate with a deterministic tax rate.

The value of the risky project is henceforth described by a log-normal distribution

and assumed to be strictly positive, as assumed in the literature on the optimal asset

allocation to achieve analytical solutions.8 We denote the amount invested in the risky

project by θ ∈ [0, X0]. In total, the firm’s wealth evolves as

dXt = θ
dSt
St

+ (Xt − θ) r dt

=
(
rXt +

(
µ− r

)
θ
)
dt+ σ θdWt, X0 > 0 is given. (1)

Looking for the optimal amount invested in the risky project, we can solve the

dynamics in equation (1) to obtain the terminal wealth XT (see Appendix B.1)

XT = erTX0 + θ
(
µ− r

) ∫ T

0

er(T−s)ds+ σθ

∫ T

0

er(T−s)dWs . (2)

This implies that XT is normally distributed with mean and variance

E[XT ] = erTX0 + θ
(
µ− r

) ∫ T

0

er(T−s)ds , (3)

Var[XT ] = Var

[
σθ

∫ T

0

er(T−s)dWs

]
= σ2θ2

∫ T

0

e2r(T−s)ds . (4)

To determine the variance (equation (4)), we use the isometry-property of the Itô

integral.

Taxation and ATR

8To obtain an analytical solution, Merton (1969) combines this log-normal assumption with preferences
exhibiting constant absolute/relative risk aversion, and Chen et al. (2011) combine it with preferences
showing symmetric asymptotic hyperbolic absolute risk aversion.
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We assume that the return from the investments, i.e., the net payoff, XT −X0, may be

positive (profit) or negative (loss) and is subject to different stochastic proportional

tax rates depending on its profit or loss character. Here and in the following, the term

“net” payoff denotes the terminal wealth less the initial investment.

If XT −X0 is positive, a tax rate τ̃p is applied, leading to an after-tax payment of

(1− τ̃p)(XT −X0). Assuming that the taxation of the return from the risky project is

subject to tax uncertainty, we describe τ̃p as a binary random variable

τ̃p =


δp · τ with probability d ,

τ with probability 1− d ,
(5)

where d ∈ (0, 1) is the probability of an adjustment of the assessed or anticipated tax

payment due to a tax audit or reform. This adjustment translates into an increase in

the tax rate by a tax risk multiplier δp ∈ (1, 1
τ
). For simplicity, in the following, we

focus in our interpretations on tax audits as possible causes for such a tax adjustment.

However, our analysis can be easily generalized towards tax adjustments due to tax

reforms.

Typically, audit probabilities vary considerably within and across countries

(Mendoza et al. (2017); Bachas et al. (2019)). A higher probability of a tax audit

indicates higher tax uncertainty, i.e., higher δp. The tax risk multiplier δp is assumed

to be independent of the pre-tax payment.

We analogously introduce a stochastic proportional tax rate for losses τ̃l, i.e., if the

net payoff XT −X0 is negative, obtaining an after-tax payment of (1− τ̃l)(XT −X0).

We describe τ̃l as a binary random variable with δl the tax risk multiplier for losses

τ̃l =


δl · λ · τ with probability d ,

λ · τ with probability 1− d .
(6)

Here, the tax loss offset parameter λ ∈ [0, 1] allows us to capture the asymmetric

nature of taxation of profits and losses resulting from loss offset restrictions. The loss
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offset parameter λ takes the value λ = 1 if losses can be completely and immediately

offset, implying an immediate tax refund at the tax rate τ (symmetric taxation of

profits and losses). If the loss offset is restricted (λ < 1), unused losses can be carried

forward until future profits allow for an offset or expire for tax loss offset purposes. If

λ = 0, the tax loss cannot be offset at all. With probability d ∈ (0, 1), a tax audit leads

to a post-tax audit reduction of the tax offset by a tax risk multiplier δl ∈ (0, 1).9

With τ̃p and τ̃l and the parameters d, δp and δl, we operationalize tax uncertainty

from a tax audit that might lead to a higher post-audit tax burden than originally

assessed.10 We summarize the after-tax payoff absent an ATR in Procedure 1:

Procedure 1 (no ATR): If the company decides not to request an ATR, the

after-tax net payoff is given by

X̃
(1)
T =


(1− τ̃p)(XT −X0), if XT ≥ X0 ,

(1− τ̃l)(XT −X0), if XT < X0 .

(7)

By assumption and the introduction of the random tax rates τ̃p and τ̃l in equations (5)

and (6), respectively, we observe that the tax audit leads to a lower after-tax net payoff

X̃
(1)
T . In case of profits (XT ≥ X0), with probability d, the firm must pay a higher tax

at rate τ · δp > τ , and with probability 1− d, the project’s tax rate is τ . In case of a

loss (XT < X0), with probability d, the company receives a tax refund at a lower rate

δl · λ · τ < λ · τ on tax losses, and, with probability 1− d, the firm remains with a tax

loss offset at rate λ · τ .

The firm can request an ATR, which provides shelter against tax uncertainty.

After paying a fee F0, the ATR ensures that the tax in the loss and profit domain are

fixed ex ante. Thus, the random tax rate τ̃p is replaced by a deterministic tax rate

ηp · τ and tax risk is resolved. The tax risk multiplier for profits ηp is ∈ (1, δp) and

9A reduction in tax loss offset might be due to a declared tax expenses that are not considered tax-
deductible by the tax authority. The tax risk multiplier for losses δl can also be interpreted as a
parameter that reflects the risk of having insufficient future cash flows for the loss offset.

10This definition of tax uncertainty is narrower than overall tax uncertainty. Hence our results reflect
the lower bound of tax uncertainty, as uncertainty can stem from other reasons, too.
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reflects the increase in the tax rate as a consequence of tax certainty provided to the

firm by means of the ATR. This rate can be chosen by the tax authority such that the

resulting combined tax rate lies in the interval between the two random outcomes of τ̃p

as described in equation (5). Correspondingly, the ATR also fixes the tax rate in the

case of a loss at the level of ηl with λ · τ . Here ηl ∈ (δl, 1) is the tax risk multiplier for

losses set by the tax authorities in the ATR such that the resulting deterministic

combined tax rate lies in the interval as described by equation (6). The firm can

choose whether it requests this ATR and pays the corresponding fee F0 or whether the

project’s tax uncertainty remains. This decision depends on the tax rate multipliers ηp,

ηl and the ATR fee F0. Later, when we discuss reasonable choices for the ATR fee F0,

we will elaborate on the relationship between ηp, ηl and F0. We summarize the

after-tax payoff of Procedure 2 with ATR:

Procedure 2 (ATR): The firm decides to initiate an ATR by paying a fixed cost F0

upfront. The main purpose of initializing an ATR is to avoid the tax uncertainty

related to the random tax rates τ̃p and τ̃l for profits and losses, respectively. Hence,

with an ATR, the firm pays for a fixed tax rate, which, however, can differ from τ . We

assume that the ATR is perfect, i.e., completely eliminates tax uncertainty. The

company can therefore replace its random tax rates (τ̃p, τ̃l) by fixed tax rates

(ηp · τ, ηl · τ). Firms that initialize the ATR are seeking a less volatile after-tax net

payoff at the maturity date T . The after-tax net payoff of the company at time T is as

follows

X̃
(2)
T =


(1− ηp · τ)(XT −X0)− F, if XT ≥ X0 ,

(1− ηl · τ)(XT −X0)− F, if XT < X0 ,

(8)

where we accrue the ATR fee F0 at the risk-free rate r to obtain F := F0e
rT at time

T .11 Note that the after-tax net payoff in the profit case XT ≥ X0 can still be negative

after deducing the fee F0. Intuitively, in this case, the company has no incentives to

11For solvability reasons, we assume a non-tax-deductible fee. Explicitly modeling a tax-deductible fee
does not allow for closed-form solutions. Therefore, we implicitly assume after-tax fees.

12



invest in the project with an ATR. We will elaborate on this when we determine the

critical fee level where the firm is indifferent between Procedures 1 (no ATR) and 2

(ATR).

To determine the maximal expected utility of the firm for the two payoff schemes

for a given fee, we assume that the firm’s preferences can be described by an

exponential utility function, that is, U(X) = − 1
γ
e−γX with a risk-aversion coefficient

γ > 0. In this sense, we extend Diller et al. (2017), where a firm’s decisions are based

on the expected after-tax cash flows. By contrast, we investigate the attractiveness of

ATRs depending on the firm’s risk aversion. Further, let us remark that the

exponential utility is widely used and well justified in economics, finance, insurance

and risk management; see, for example, Carmona (2009). As the after-tax net payoff

can be negative, we cannot describe preferences by logarithmic or power utility that

are exclusively defined for the positive real line. The firm wants to maximize the

expected utility from the after-tax net payoff. The corresponding optimal investment

problem of the firm under Procedures 1 and 2 is then given by

max
θ∈[0,X0]

EU (i)(θ) := max
θ∈[0,X0]

E
[
−1

γ
exp

{
−γX̃(i)

T

}]
, i = 1, 2 , (9)

s.t. X = (Xt)t∈[0,T ] follows equation (1).

Using this objective function, we are assuming that the firm is interested in

maximizing excess wealth, where the initial wealth X0 is chosen as a basis for

comparison. Note that maximizing the excess wealth in fact also relate to minimizing

the probability that terminal wealth XT falls below the initial wealth level X0. The

lower this probability, the higher the expected utility resulting from the excess wealth.

Obviously, here and in the following, the ATR is not a choice variable. By

contrast, we use a two-step approach. In the first step we assume one of the two

available tax procedures and then analyze the optimal investment problem under this

assumption and reiterate this optimization for the other tax procedure. In the second

step, we then compare the results of the two procedures to figure out under what

13



conditions using the ATR is optimal.

For mathematical tractability, we have abstracted from the fact that tax rates on

profits from risky investment projects like R&D might differ from tax rates on interest

income. Accordingly, we also abstract from the resulting implications for the after-tax

net payoff of the firm under such a tax system (e.g., a tax system with a lower

proportional tax rate on interest income). In Appendix B.2, we show how the after-tax

net payoff of the firm can be modified to this more granular tax framework. The

optimization problem introduced below can still be solved semi-analytically. We expect

the main results of the paper qualitatively hold in this setup.

Optimization

Using this two-step approach, we determine the expected utility of the firm and

deduce the optimal amount to be invested in the risky project under either tax

procedure, with and without the ATR. Detailed derivations can be found in

Appendix B.3 and B.4.

Proposition 2.1 (Expected utility and optimal investment amount, Procedure 1)

Under Procedure 1, the expected utility as a function of the investment amount

θ ∈ [0, X0] is given by

EU (1)(θ) =− 1

γ
E
[
exp{−γX̃(1)

T }
]

=− d

γ

(
exp {γ(1− δpτ)X0} · g1(X0, τδp) + exp {γ(1− λτδl)X0} · g2(X0, λτδl)

)
− 1− d

γ

(
exp {γ(1− τ)X0} · g1(X0, τ) + exp {γ(1− λτ)X0} · g2(X0, λτ)

)
,

where g1(a, b) and g2(a, b) are defined as

g1(a, b) := E
[

exp{−γ(1− b)XT} · 1{XT≥a}
]

= exp

{
−γ(1− b)E[XT ] +

1

2
γ2(1− b)2 Var[XT ]

}
· Φ

(
− a− E[XT ]√

Var[XT ]
− γ(1− b)

√
Var[XT ]

)
, (10)

g2(a, b) := E
[

exp{−γ(1− b)XT} · 1{XT<a}
]

= exp

{
−γ(1− b)E[XT ] +

1

2
γ2(1− b)2 Var[XT ]

}
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· Φ

(
a− E[XT ]√

Var[XT ]
+ γ(1− b)

√
Var[XT ]

)
. (11)

The optimal amount θ∗ ∈ [0, X0] solving equation (9) for Procedure i = 1 is either 0,

X0 or determined implicitly and uniquely by solving

∂EU (1)(θ)

∂θ
= 0 . (12)

Proof: See Appendix B.3. We also provide an analytic expression for ∂EU(1)(θ)
∂θ

. �

With Proposition 2.1 we derive an analytical expression for the expected utility of

the firm as a function of the investment amount θ under the first tax procedure

without an ATR. The optimal investment amount is determined by maximizing the

expected utility of the firm. Proposition 2.2 derives the analogous expression for the

tax procedure with an ATR.

Proposition 2.2 (Expected utility and optimal investment amount, Procedure 2)

Under Procedure 2, the expected utility as a function of the investment amount

θ ∈ [0, X0] is given by

EU (2)(θ) =− 1

γ
E
[
exp{−γX̃(2)

T }
]

=− eγF

γ

(
exp{γ(1− τηp)X0} · g1(X0, τηp) + exp{γ(1− λτηl)X0} · g2(X0, λτηl)

)
,

where F := F0e
rT and g1(a, b) and g2(a, b) are defined as in Proposition 2.1. The

optimal amount θ∗∗ ∈ [0, X0] solving equation (9) for Procedure i = 2 is either 0, X0 or

determined implicitly and uniquely solving

∂EU (2)(θ)

∂θ
= 0 . (13)

Proof: See Appendix B.4. We also provide an analytic expression for ∂EU(2)(θ)
∂θ

. �

Due to the fixed and thus certain tax rate by means of adopting the ATR, the
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expected utility of the firm becomes simpler than under the first tax procedure. The

fee F0 is an important driver of the magnitude of the expected utility under

Procedure 2. However, it does not affect the magnitude of the optimal investment

amount θ, under this tax procedure, i.e., with the firm requesting an ATR.12

So far, we have determined the optimal investment amount under the two different

tax procedures, assuming that the ATR fee level is given. In the following, we analyze

how this fee can be reasonably set, considering the view point of both the firm and the

tax authority. We determine the firm’s maximal willingness to pay for the ATR and

the lowest fee that is acceptable to the tax authority.

2.2. Reasonable ATR Fees

Firm’s point of view

Whether the firm is willing to request an ATR depends on the firm’s risk preferences,

the tax system and tax uncertainty parameters, and the ATR fee in both tax

procedures (i.e. the parameters d, δp, δl, λ, τ). In what follows, we assume that the

model parameters are given, except the ATR fee F0. We further assume that the firm

always chooses the optimal investment amount θ∗ (optimal amount under tax

procedure 1) and θ∗∗ (optimal amount under tax procedure 2) respectively. We

determine the critical fee F ∗0 that leads to identical utility levels for both tax

procedures for the firm (firm’s procedural indifference). The firm will request an ATR

only if the expected utility is at least as high as absent an ATR. As the utility of the

firm decreases monotonically in the fee, we conclude that the firm will request the

ATR if F0 ≤ F ∗0 ; otherwise the firm chooses Procedure 1 with no ATR. Formally, the

critical fee level F ∗0 solves

EU (1)(θ∗) =EU (2)(θ∗∗) .

12This finding resembles the result observed in optimal insurance contracts. If an actuarially fair
premium is charged for an insurance contract, the optimal insurance purchase of a risk-averse pol-
icyholder is full insurance. If instead a premium with a fixed surcharge is applied, the optimal
insurance purchase of a risk-averse policyholder is either still full insurance or no insurance (which
is the case if the surcharge is too high).
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Applying Propositions 2.1 and 2.2, and F0 = Fe−rT , we obtain

F ∗0 =
e−rT

γ
ln
EU (1)(θ∗)

h(τ, ηp, ηl)
, (14)

with h(τ, ηp, ηl) := − 1
γ

[
exp{γ(1− τηp)X0} · g1(X0, τηp)− exp{γ(1−λτηl)X0} · g2(X0, λτηl)

]
.

So far, we have taken the viewpoint of the firm. The firm chooses the ATR

(Procedure 2) if the offered fee F0 is less than the critical fee F ∗0 . In this sense, F ∗0 can

be interpreted as the firm’s maximal willingness to pay for the service provided by the

ATR.

Tax authority’s point of view

To compare the expected terminal tax revenue under both tax procedures, we assume

that an ATR is offered if and only if the expected terminal tax and fee revenue from

this firm is at least as high as in the case without an ATR (tax authority’s procedural

indifference). This assumption implies that the tax authority is risk neutral with

respect to tax uncertainty. Further, we assume that the tax authority does not observe

the risk aversion coefficient of the firm. Nor does it have the knowledge about the

firm’s specific investment strategies. However, the tax authority does know the

distribution of the firm’s terminal wealth at time T , i.e. XT , based on which the tax

authority can compute the expected terminal tax revenue.13 For each distribution of

XT , the tax authority can compute a critical fee level. The critical fee level F ∗∗0 is the

lowest level the tax authority is willing to accept when offering an ATR for a given XT

distribution. At this level, the expected net revenue of the tax authority is zero as

additional fee revenues from ATR compensate exactly the loss of tax revenue due to

lower investments and profits of taxpayers in response to the ATR fee scheme. As a

consequence, it is reasonable for the tax authority to provide the ATR for a given XT

distribution, if the fee is set higher than this critical level, i.e. F0 ≥ F ∗∗0 .

Let us now derive the critical fee level of the tax authority F ∗∗0 . As, in our setting,

13It is impossible in reality that the tax authority is able to observe both the firm’s optimal investment
strategy and the utility function. Thus, we exclude this by assumption. However, if we assumed
that the tax authority is informed about the optimal investment strategies and the specific utility
function of the firm, the authority could infer the risk aversion level of the firm.
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XT is coupled with the investment amount, we obtain the expected terminal wealth of

the authority as a function of θ straightforwardly. For Procedure 1, the expected

terminal tax revenue from this firm is

ER(1)(θ) := τ · (d · δp + (1− d)) · E
[
(XT −X0)1{XT≥X0}

]
− λτ · (d · δl + (1− d)) · E

[
(X0 −XT )1{XT<X0}

]
(15)

= τ · (d · δp + (1− d)) ·

[(
1− Φ

(X0 − E[XT ]√
Var[XT ]

))(
E[XT ]−X0

)
+ ϕ

(X0 − E[XT ]√
Var[XT ]

)
·
√

Var[XT ]

]
− λτ · (d · δl + (1− d))

·

[
Φ
(X0 − E[XT ]√

Var[XT ]

)
·
(
X0 − E[XT ]

)
+ ϕ

(X0 − E[XT ]√
Var[XT ]

)
·
√

Var[XT ]

]
,

where the standard normal density and cumulative distribution function are given by

ϕ(t) := 1√
2π
e−t

2/2 and Φ(x) :=
∫ x
−∞

1√
2π
e−t

2/2dt. In the last step, we use that the

positive (respectively negative) part of (XT −X0) follows a truncated normal

distribution. Similarly, for Procedure 2, the expected terminal tax revenue is given by

ER(2)(θ) = ηpτ · E
[
(XT −X0)1{XT≥X0}

]
− ληlτ · E

[
(X0 −XT )1{XT<X0}

]
+ F

= τ ·

[
ηp
(
E[XT ]−X0

)
−
(
ηp − ληl

)
· Φ
(X0 − E[XT ]√

Var[XT ]

))
·
(
E[XT ]−X0

)
+ (ηp − ληl) · ϕ

(X0 − E[XT ]√
Var[XT ]

)
·
√

Var[XT ]

]
+ F . (16)

As we have learned from Propositions 2.1 and 2.2, the firm invests different amounts in

the risky project under the two tax procedures. The tax authority anticipates this

behavior. Taking this into consideration, the critical fee level F ∗∗0 is determined such

that

ER(1)(θ∗) =ER(2)(θ∗∗) . (17)

We therefore compute the fee level F ∗∗0 = e−rTF0 satisfying equation (17). The

parameters, such as δp, δl, ηp and ηl, are important drivers of the magnitude of F ∗∗0 .
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Overall, taking both the viewpoint of the firm and tax authority, an ATR is offered

for an ATR fee F0 ≥ F ∗∗0 . The firm accepts this fee according to its risk aversion and

optimal investment amount if and only if this fee is lower than F ∗0 . If F ∗0 < F ∗∗0 , an

ATR will not be requested by the firm. Thus ATR fees with F0 ∈ [F ∗∗0 , F ∗0 ], for

F ∗0 ≥ F ∗∗0 , are reasonable and beneficial to both the firm and the tax authority.

3. Numerical analyses

To gain an intuitive understanding of the results stated in section 2, Propositions 2.1

and 2.2, and the discussions about the critical fees, we conduct numerical analyses and

therefore consider some parameters as given. In our baseline scenario, we assume

µ = 0.06, r = 0.02, σ = 0.15, γ = 0.02, T = 5, X0 = 100, τ = 15% .

The rate of return µ on the risky project and the volatility σ are chosen in line with a

reasonable Sharpe ratio, i.e. a Sharpe ratio of 26.67% ≈ (µ− r)/σ. The Sharpe ratio

describes the performance of a risky project in relation to a risk-free investment.

Typically, a Sharpe ratio above 0.5 in the long run indicates great investment

performance and is difficult to achieve, while a ratio between 0.1 and 0.3 is frequently

considered reasonable and can be achieved more easily (see, e.g., Sharpe 1994). The

choice of the risk aversion parameter γ is based on experimental studies.14

3.1. Optimal Investment Amount

Let us now analyze the optimal investment amount and the implications of both tax

procedures, choosing the parameters set in our baseline scenario and six different

choices of the parameters (δp, δl, d, ηp, ηl, F0, τ). To illustrate the effect of tax

uncertainty on the optimal investment amount in the case of R&D investments, in

14Experimental studies find reasonable parameters for the relative risk aversion (RRA) coefficient (e.g.,
Barsky et al. 1997). For the underlying exponential utility function, the absolute relative risk
aversion (ARA) is constant and denoted by γ, while the RRA for exponential utility varies in time.
For our numerical example, we deduce the ARA coefficient, i.e. γ, of the exponential utility from
the observed RRA level in the existing literature by assuming that γ ·X0 = observed RRA levels.
65% of the data in Barsky et al. (1997) shows a RRA above 3.76, 24% below 2 and 12% between 2
and 3.76. Thus, we use γ = 0.02 and also use γ = 0.03 in the following.
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Table 1, we choose a rather high tax uncertainty scenario with an audit probability

varying from d = 40% to 60%. In the literature, audit probabilities vary considerably

within and across countries (Mendoza et al. 2017; Bachas et al. 2019). There is

evidence for extremely low audit probabilities with realistic magnitudes, ranging from

1% to 3% (Dhami and al Nowaihi 2007), as well as high audit rates, ranging from 20%

to 50%, as reported, for example, by Collins and Plumlee 1991; Alm et al. 1992; Alm

et al. 1993; Andreoni et al. 1998 and Bernasconi 1998. In Hoopes et al. (2012), the

average estimated IRS audit rate for U.S. public firms between 1992 and 2008 is 29%,

ranging from 0% to 55% with 19% in the 25th percentile to 37% in the 75th percentile

of their data. Given that R&D is a matter with high-tax uncertainty, due to the

inherent hard-to-value intangibles and transfer pricing issues, assuming even higher

audit probabilities would be appropriate.

If there is an audit, the profit tax collected is assumed to be δp = 4 (scenario

(1)−(3)) and δp = 3 (scenario (4)−(6)) times higher than originally declared.15 To

allow for a better interpretation of the resulting numbers, we display the certainty

equivalent (CE) instead of the optimal utility level. The use of the CE makes the

quantities easier to interpret, because the CE expresses the expected utility in

monetary units instead of utility units. In our case, we can define the certainty

equivalent as an amount of a certain capital that the firm shall receive as an equivalent

for an uncertain terminal wealth arising from the R&D investment. As the argument

of the utility is XT −X0, we define the certainty equivalent as follows

CE(1) = −1

γ
ln
(
−γEU (1)(θ∗)

)
+X0 , CE(2) = −1

γ
ln
(
−γEU (2)(θ∗∗)

)
+X0 ,

where CE(1) and CE(2) give the certainty equivalents resulting from the case without

15These assumption account for the pronounced exposure of R&D investments to tax uncertainty.
Disputes on what is tax deductible and transfer pricing may easily lead to a multiple times higher
tax burden following a tax audit (e.g., 9 billion dollars of potential additional taxes for Facebook,
see White (2020), and 13 billion dollars of expected additional taxes from a transfer pricing dispute
of Coca-Cola, see Yee (2022). We conducted sensitivity analyses using, for example, δp = 1.5 and
found the same qualitative effects as discussed in the following. The general effect of tax uncertainty
on optimal investment is, however, diminishing.
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and with an ATR (Procedures 1 and 2), respectively. Table 1 illustrates the optimal

investment amount and the certainty equivalent of the firm under the two tax

procedures for various parameter combinations of (δp, δl, d, ηp, ηl, F0, τ) and two

choices of risk aversion γ. We assume an ATR fee F0 inside the acceptance set

[F ∗∗0 , F ∗0 ].16

< Insert Table 1 around here >

We observe three interesting effects. (a) Recall that, in case of an ATR, the random

tax rate τ̃p (τ̃l) becomes the fixed tax rate ηp · τ (ηl · τ) if the company pays an

additional ATR fee F0. We find that the optimal investment amount in case of tax

uncertainty (i.e. θ∗) is always lower than the optimal investment amount in case of an

ATR (no tax risk, θ∗∗). We observe this result in all scenarios (1)−(6) and for both

risk aversion coefficients. This result suggests that here the ATR can foster risky

investments for all levels of risk aversion. Because of the reduced tax uncertainty with

an ATR, in the optimum, the firm increases its investments in R&D. This effect is

quite intuitive, as eliminating tax uncertainty allows the firm to take on riskier projects

and thus accept more cash-flow uncertainty. (b) Under both tax procedures, a more

risk-averse firm (higher risk aversion parameter γ = 0.03) will invest less in the risky

project than a less risk-averse firm (γ = 0.02). Moving from γ = 0.02 to 0.03, the firm

reduces its holdings in the risky project. The magnitude of this decrease in the optimal

investment amount does not differ substantially between the two tax procedures and is

slightly higher in case of an ATR (i.e. θ∗∗) than in the case without ATR (i.e. θ∗).

Surprisingly, an ATR has a larger impact for a less risk-averse firm. Through the

“guaranteed” tax rates, the less risk-averse firm will undertake riskier investments,

expecting to be rewarded with a higher return. If the firm is rather risk-averse, the

guaranteed tax rates become less interesting to the firm, as it will per se pursue a less

risky alternative investment. In this sense, the reduction of the optimal holding in a

risky project caused by the increase in risk aversion is less substantial for the case with

16We provide a detailed discussions of reasonable ATR fees at the end of this section.
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no ATR than for the case with an ATR. (c) We assume an audit probability increasing

from d = 40% in scenario (1) to d = 60% in scenario (3). If there is no audit, the tax

authority taxes profits at a rate τ . With probability d, an audit leads to a higher tax

rate of δp · τ . The average expected tax on profits, given by E[τ̃p] = d · δp · τ + (1− d) · τ ,

is increasing from scenario (1) to (3) and, in each scenario, is equal to ηp. We can

easily see that the higher the tax rate multiplier ηp, the lower the certainty equivalent

CE(2) for the firm resulting from the Procedure 2 with ATR (risk taking θ∗∗). In our

numerical example, the magnitude of this decrease is very similar for CE(1) resulting

from the Procedure 1 without an ATR (risk taking θ∗).

< Insert Table 2 around here >

Consistent with the literature (Ljungqvist et al. 2017, Bethmann et al. 2018,

Langenmayr and Lester 2018), we find that more generous loss offset rules fuel

risk-taking. Moreover, offering ATRs in an environment with generous loss offset

provisions, further encourages risk-taking. To illustrate this amplifying effect, in

Table 2, we vary the loss offset parameter λ, keeping the other parameters as in Table 1

and focusing on a uniform risk aversion level of γ = 0.02. Recall that λ is the tax offset

parameter, where a λ value of 0 means there is no loss offset at all and a λ of 1 means

a full tax offset. Compared to other parameters, the offset rate has a substantial

influence on the firm’s investment behavior. Two interesting observations emerge. (a)

If the firm has no possibility to offset losses (λ = 0), it will invest less in the risky

project. In comparison, the risky investment amount θ∗ is comparably larger, if the

loss offset parameter rises to 0.9 (c.f. Table 1). For the extreme case λ = 1 (a full loss

offset), the optimal investment amount of the firm is highest. This finding is consistent

with Ljungqvist et al. (2017), Langenmayr and Lester (2018) and Osswald and

Sureth-Sloane (2020). Here, a tight loss offset provision “punishes” losses, as they are

not fully tax-deductible. Then more conservative (less risky) investments with a lower

probability of losses (lower θ) become more attractive. (b) The tax offset parameter λ

also has a monotone effect on the optimal investment amount θ∗∗ under Procedure 2
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(with ATR). Compared to the case with no ATR, this effect is more pronounced; i.e.,

the increase in magnitude from θ∗ to θ∗∗ is more pronounced for λ = 1 than λ = 0.

Specifically, for a given tax offset parameter λ, the application of ATR leads to a

riskier investment, i.e. θ∗∗ > θ∗. Implementing the ATR together with a generous tax

offset policy, the encouraging-risky-investment effect will be further strengthened.

To analyze in more detail how tax uncertainty affects the optimal investment

amount under the two tax regimes, we investigate how investments and tax

uncertainty interact with each other and compare the results to the optimal asset

allocation literature without taxes. In the case of an ATR with symmetric taxation

(η := ηp = ηl = 1, λ = 1), the optimal investment decision under exponential utility is

well studied. In this case, it turns out that the optimal investment amount θ∗∗ is a

function of the adjusted Sharpe ratio (ASR)

ASR :=
µ− r
σ2

,

a result that is originally by Merton (1971). Adapted to our setting, a constant tax

rate ητ leads to the optimal investment amount17

θ∗ = θ∗∗ =
µ− r

γσ2(1− τ)

∫ T
0
er(T−s) ds∫ T

0
e2r(T−s) ds

=
ASR

γ(1− τ)

∫ T
0
er(T−s) ds∫ T

0
e2r(T−s) ds

. (18)

Using the parameter set of scenario (1) from Table 1, we obtain, for example,

θ∗∗ ≈ 99.64; i.e., the optimal investment strategy suggests investing almost all the

initial wealth in the risky project. Figure 1 analyzes Procedure 2 (with ATR) in more

detail. We want to see how an asymmetric taxation of profits and losses affects the

optimal investment amount θ∗∗.

17This can be seen as follows: Abbreviating µ̃ := (µ− r)
∫ T

0
er(T−s) ds and σ̃ := σ

√∫ T

0
e2r(T−s) ds, we

find for a constant and symmetric tax ητ that

E
[
− 1

γ
exp {−γ(1− τ)(XT −X0)}

]
= − 1

γ
exp

{
γ(1− τ)X0 − γ(1− τ)µ̃θ +

1

2
γ2(1− τ)2σ̃2θ2

}
.

Taking first-order conditions with respect to θ, we realize that this objective is maximized if and
only if the maximizer θ∗∗ is given by equation (18).
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< Insert Figure 1 around here >

Figure 1 displays the optimal investment amount of Procedure 2 with ATR. The

investment volatility σ is displayed at the x-axis. The rate of return µ on the risky

project is adapted such that the adjusted Sharpe ratio is the same for each of the

underlying investments considered. The left-hand side of Figure 1 presents the scenario

with symmetric taxation (λ = 1). For the analysis, we look at different investment

opportunities with identical adjusted Sharpe ratios; i.e., for different asset volatility σ,

we choose pairs (µ, σ2) =
(

ASR ·σ2 + r, σ2
)

and fix the adjusted Sharpe ratio

ASR ≈ 1.777778 using the base case parameter set . We confirm the theoretical results

of equation (18), i.e. that the optimal investment amount is constant for (µ, σ2) with

the same adjusted Sharpe ratio. A higher tax rate of the ATR (higher τ) leads to a

higher optimal investment amount. The right-hand side of Figure 1 shows the effect of

asymmetric taxation (λ < 1). We observe that the optimal investment amount is

increasing in the loss-offset parameter λ. A smaller λ value means that the firm will

end up with more net losses, if there are any, which forces it to take less risk. Further,

if λ < 1, the optimal investment amount increases with increasing investment volatility.

This can be explained by the fact that increasing the volatility – while keeping the

ASR constant – leads to risky investments with a higher Sharpe ratio (µ− r)/σ. A

higher Sharpe ratio increases the likelihood of avoiding losses; that is why the optimal

investment amount increases with the risk σ.

< Insert Figure 2 around here >

Using scenario (1) from Table 1, Figure 2 presents the optimal investment amount in

both tax regimes as a function of the asset volatility σ. Recall that we fix the adjusted

Sharpe ratio and increase the project return according to the increased risk volatility.

From the right graph, we observe that a higher investment return/risk leads to

significantly higher optimal investment amounts θ∗, θ∗∗. This numerical result suggests

that a simple relation between the ASR and the optimal investment amount, as in the
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constant and symmetric tax case of equation (18), is no longer true. We again observe

that the ATR (straight lines) leads to an increased optimal investment amount,

compared to the case without ATR (dashed lines). We further find that the optimal

investment amounts θ∗ and θ∗∗ are decreasing in the company’s risk aversion.18 This

result is intuitive in the case of symmetric taxation, where the optimal investment

amount is inversely proportional to the risk aversion coefficient; see equation (18). In

the case of loss offset restrictions (λ < 1), the effect of risk aversion on optimal

investment is, however, not as pronounced. As analyzed in more detail in section 3, the

reduced loss offset makes an increase in the investment amount and thus taking risk

less attractive.

3.2. Reasonable ATR Fees

To numerically illustrate our theoretical findings from section 2 on the choice of

reasonable ATR fees, we investigate when F ∗∗0 < F ∗0 and hence under what conditions

the tax authority and the firm agree on an ATR contract. Under the given set of

assumptions, Table 3 provides the viewpoint of firms for various risk aversion levels γ

and displays the resulting critical fee levels F ∗0 . Recall that F ∗0 is the maximum fee the

firm is willing to pay for the ATR. Starting with a specific risk aversion level (in our

example, γ = 0.04), we observe that a more risk averse firm (with a higher risk

aversion level) is willing to pay more to eliminate tax uncertainty by requesting the

ATR. The impact of risk aversion on the maximal willingness to pay F ∗0 is not obvious,

as can be seen in Table 3. We have to implicitly determine the critical fee by equating

the optimal expected utility for the tax procedure with no ATR and the procedure

with a fee-based ATR. As a higher risk aversion affects the expected utility for both

procedures, its impact on the maximal willingness to pay F ∗0 is not monotone and may

lead to either an increase or decrease. This finding can be confirmed by the numerical

results for F ∗0 in Table 3, which are not monotone in the risk aversion level γ. In our

example, if the firm is comparably less risk-averse, for example, γ = 0.02, a higher

18This additional analysis is available upon request from the authors.
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maximal willingness to pay for the ATR results. Presumably, the optimal investment

amount resulting from a lower γ is substantially larger, which can generate much more

tax payments, if no ATR agreement is closed.

< Insert Tables 3 and 4 around here >

Table 4 takes the view of tax authorities and exhibits the critical fee level F ∗∗0 for

various combinations of tax rate multipliers ηp, ηl of the ATR. According to our

considerations in section 2, the tax authority is willing to offer an ATR for any fee

higher than F ∗∗0 . Recall that ηp · τ and ηl · τ are the ultimately applied tax rates on

profits and losses, respectively, as agreed on under the ATR. Both an increase in ηp

and a decrease in ηl lead to higher average tax revenue for the tax authority. A higher

tax on profits and a lower tax on losses both increase the overall tax payment.

Consistently, Table 4 illustrates that the resulting critical fee F ∗∗0 the tax authority

requires is decreasing in ηp and −ηl.

The implementation of the ATR in case of a relatively low ATR profit tax ηp and

a relatively high ηl requires a positive fee for the ATR. On the contrary, if the tax

authority has already implemented a relatively high ATR profit tax (i.e. high ηp) and a

relatively strict loss offset regulation (i.e. low ηl), the application of the ATR can be

realized by a zero or negative fee. A negative F ∗∗0 implies that any positive fee is

acceptable for the tax authority and the authority is even willing to pay the firm

(negative fee) if the firm requests the offered ATR. Such a negative fee can be

interpreted as the tax authority’s willingness to invest in the ATR, for example, in

human resources or technology and thereby reduce taxpayers’ compliance costs and

make the ATR more attractive. Our results clarify that such a strategy benefits the

tax authority for several sets of (fixed) tax rates. Note that, for Table 3, we assumed

ηp = 1.40, ηl = 0.90. Under this set of assumptions, the firm’s resulting maximal

willingness to pay for the ATR is positive for all different risk aversion levels. For this

combination of ηp and ηl, the minimum fee required by the tax authority is negative.
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As a consequence, both the firm and the tax authority are ready to trade in the ATR.

In this scenario, firms and the tax authority will always agree on the ATR for fees

within the interval [F ∗∗0 , F ∗0 ].

Through the numerous numerical illustrations in this section, we confirm and

quantify the main theoretical findings in section 2. If a firm chooses an ATR, it will

allow the firm to take on riskier investments. More importantly, the tax authority can

offer an acceptable ATR via different combinations of ATR fees on the one side and

tax rates for profits and losses on the other. For example, the tax authority can choose

a low profit tax and a positive ATR fee or a high profit tax and a negative ATR fee to

achieve expected-revenue-neutral (i.e. zero expected revenue).

4. Conclusion

We investigate the impact of an ATR on firm’s risky investments and how ATR fees

can be set to benefit both the firm and the tax authority. Combining prior literature

on taxation, advance tax rulings, and optimal asset allocation, we show that ATRs

might foster risky investments and determine the reasonable fee range for an ATR. For

most scenarios, such a range can be derived, and hence the ATR exchange between the

firm and the tax authority can occur. Under specific conditions, for example, high

ATR tax rates, a tax authority may even be willing to provide the ATR for a zero or

even negative fee.

Further, we show that the firm’s and the tax authority’s decisions to agree on a

fee-based ATR crucially depend on the loss offset policy and profit tax rate as well as

the firm’s risk aversion level. A generous tax loss offset amplifies the ATR’s potential

to encourage firm risk taking. We find that a firm with low risk aversion seeks a riskier

investment than a more risk-averse firm. More interestingly, taking on the ATR

influences a less risk-averse firm’s investment behavior to a larger extent. Hence the

implementation of the ATR will increase the riskiness of the projects, irrespective of

the firm’s risk aversion. However, this ATR-induced increase in riskiness is more

pronounced for a less risk-averse firm.
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Our model is limited by its assumptions. The return from the risky investments is

assumed to follow relatively simple dynamics, the Black-Scholes setting with a

constant volatility. In future research, more complex asset dynamics, moving beyond

normally distributed log-returns and describing the evolution of the risky investments

with a more general stochastic volatility model in the sense of Heston (1993) can be

developed. A stochastic volatility model would allow researchers to generalize our

model and capture risk patterns that can be often observed in financial markets, such

as heavy tails, volatility clustering, and the smile of implied volatilities (see Tankov

2003). The incorporation of volatility risk intensifies the cash flow uncertainty. It

would be interesting to investigate whether our findings about the impact of the ATR

and other tax policies on asset allocation prevail in a more volatile market. Further,

while we assumed exponential utility, i.e. constant absolute risk aversion preference, to

describe the firm’s risk aversion, future research should consider behavioral risk and

loss attitudes, as known, for example, from cumulative prospect theory. This could

better capture possible gambling by firms.

Although our analyses are conducted in a stylized model, our results enhance the

understanding of ATR-induced investment effects and the corresponding combined

effects of ATRs and loss offset regimes. The negative impact of tax uncertainty on

risky investments can be attenuated or even reversed by appropriately designed ATRs.

Our predictions on the fee-dependent investment effects of ATRs should be tested

empirically. With such empirical analyses, our results can help tax authorities develop

policies to mitigate tax uncertainty and encourage risky investment. Knowing how

firms invest in response to ATRs under different tax regimes will help tax authorities

design better ATRs. Our results also provide interesting insights for firms about

whether to apply for ATRs and may help them make better asset allocation decisions

by accounting for both taxes and legislative, administrative and judicial tax

uncertainty.
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Appendix

A. Variables

< Insert Table 5 around here >
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B. Technical details and derivations

B.1. Terminal wealth

Apply Itô’s Lemma on the dynamics of equation (1) using the function f(x) = e−rt · x

to obtain

d(e−rtXt) = θe−rt
(
(µ− r)dt+ σdWt

)
.

This implies that

e−rtXt = X0 + θ

∫ t

0

e−rs(µ− r)ds+ θσ

∫ t

0

e−rsdWs ,

which can be used to obtain equation (2), as desired.

B.2. Tax system with a different tax rate on capital income

Our framework assumes that taxation is based on the net payoff XT −X0 from the

overall investments that can be decomposed in the risky project and a risk-free

government bond. In various countries different tax rates apply to the return from the

R&D investments and the return from government bonds. Using uniform tax rates for

both sources of income as in our main analysis, thus, is a simplification. To clarify that

our results also hold for other settings, we show and analyze how our framework can be

enhanced for such a tax system with different tax rates. Recall the time-T value of the

risky project

ST = S0 exp{RS
T}, with RS

T =
(
µ− σ2

2

)
T + σWT .

In the modified framework, the risk-free return r is immediately taxed by a flat tax τ

The risky investment project is subject to a profit taxation where the after-tax value of
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the risky investments is

S̃T =


S0 exp{(1− τ̃p)RS

T} if ST ≥ S0

S0 exp{(1− τ̃l)RS
T} if ST < S0 ,

where tax rates for the risky project are still given by equations (5) and (6),

respectively. With this slight modification, we can follow the same steps as in

section 2. The firm‘s terminal wealth is then separated in two cases, one where the

project achieves a positive return (ST ≥ S0) and is taxed at a (random) profit tax rate

τp and the second case where the project return is negative (ST < S0) and the

company receives a loss tax τl including loss offset restrictions. Calculations similar to

the ones in Appendix B.1 lead to the terminal firm value after tax

X̃T =


erτTX0 + θ

(
µ(1− τ̃p)− rτ

) T∫
0

erτ (T−s)ds+ σ(1− τ̃p)θ
T∫
0

erτ (T−s)dWs , if ST ≥ S0 ,

erτTX0 + θ
(
µ(1− τ̃l)− rτ

) T∫
0

erτ (T−s)ds+ σ(1− τ̃l)θ
T∫
0

erτ (T−s)dWs , if ST < S0 ,

where we abbreviate rτ = r(1− τ). We can still compute the expected utility rather

easily in terms of an integral expression. Exploiting that (ST ≥ S0) is equivalent to a

positive return (RS
T ≥ 0), the utility can be written as an integral over the bivariate

density f(U, V ) of (U, V ) = (RS
T , σθ

T∫
0

erτ (T−s)dWs)

EU (1)(θ) =− 1

γ
E
[
exp{−γX̃T}

]
=− 1

γ

[ ∞∫
−∞

∞∫
−∞

exp
{
− γ(erτTX0 +

(
µ(1− τ̃p)− rτ

)
c+ (1− τ̃p) · v)

}
· 1{u≥0} · f(u, v) du dv

+

∞∫
−∞

∞∫
−∞

exp
{
− γ(erτTX0 +

(
µ(1− τ̃l)− rτ

)
c+ (1− τ̃l) · v)

}
· 1{u<0} · f(u, v) du dv

]
,

where we abbreviated c = θ
T∫
0

erτ (T−s)ds. Analoguously, we obtain the utility with an

ATR agreement EU (2)(θ) and can perform the same analysis as in our main framework

in section 2. Note that the expected utility of the firm under both tax procedures can
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still be determined semi-analytically, i.e. in integral form. The same holds for the

optimization problem. We expect that the main results of our main analysis still hold

qualitatively if two different tax rates are applied to the return from the risky project

and the risk-free government bond.

B.3. Expected utility and optimal investment under Procedure 1

For Procedure 1 and exponential utility U(X) = − 1
γ
e−γX , γ > 0, we can exploit the

independence between τ̃p, τ̃l and X̃
(1)
T to write the expected utility as

EU (1)(θ) =− 1

γ
E
[
exp{−γX̃(1)

T }
]

=− 1

γ
E
[
E
[

exp{−γ(1− τ̃p)(XT −X0)} · 1{XT≥X0}

+ exp{−γ(1− τ̃l)(XT −X0)} · 1{XT<X0}
∣∣ τ̃p, τ̃l] ]

=− 1

γ

(
d · E

[
exp{−γ(1− τ · δp)(XT −X0)} · 1{XT≥X0}

+ exp{−γ(1− λ · τ · δl)(XT −X0)} · 1{XT<X0}

]
+ (1− d) · E

[
exp{−γ(1− τ)(XT −X0)} · 1{XT≥X0}

+ exp{−γ(1− λ · τ)(XT −X0)} · 1{XT<X0}

])
,

where, in the first step, we have used property of iterated expectation. In the second

step, we exploit the independence between τ̃p, τ̃l and XT . Due to the normal

distribution of XT , combined with exponential utility, it is possible to compute the

above expected utility in closed form. In particular, for g1(a, b) and g2(a, b) as

introduced in equations (10) and (11), we obtain as desired

=− d

γ

(
exp {γ(1− δpτ)X0} · g1(X0, τδp) + exp {γ(1− λτδl)X0} · g2(X0, λτδl)

)
− 1− d

γ

(
exp {γ(1− τ)X0} · g1(X0, τ) + exp {γ(1− λτ)X0} · g2(X0, λτ)

)
.

Note that the expected utility is a function of investment amount θ which is hidden in

the expected value and variance of XT , that is in the functions g1(a, b) and g2(a, b). To
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determine the optimal investment amount, we shall take the first order derivative of the

expected utility with respect to θ. From equations (3) and (4) it is easy to verify that

∂

∂θ

E[XT ]− erTX0√
Var[XT ]

=
∂

∂θ

(µ− r)
∫ T
0
er(T−s)ds

σ
√∫ T

0
e2r(T−s)ds

= 0 , (19)

∂E[XT ]

∂θ
= (µ− r)

∫ T

0

er(T−s)ds =
1

θ

(
E[XT ]− erTX0

)
, (20)

∂ Var[XT ]

∂θ
= 2σ2θ

∫ T

0

e2r(T−s)ds =
2

θ
Var[XT ] , (21)

∂
√

Var[XT ]

∂θ
= σ

√∫ T

0

e2r(T−s)ds =
1

θ

√
Var[XT ] , (22)

∂ 1√
Var[XT ]

∂θ
= − 1

σθ2
√∫ T

0
e2r(T−s)ds

= −1

θ

1√
Var[XT ]

. (23)

Referring to the difference of the two equations, (19)−(23), we can use the product

rule to obtain

∂g1(a, b)

∂θ
=

(
−1

θ

(
γ(1− b)

(
E[XT ]− erTX0

)
− γ2(1− b)2 Var[XT ]

))
· g1(a, b)

+ exp

{
−γ(1− b)E[XT ] +

1

2
γ2(1− b)2 Var[XT ]

}
· ϕ

(
− a− E[XT ]√

Var[XT ]
− γ(1− b)

√
Var[XT ]

)
· 1

θ

(
a− erTX0√

Var[XT ]
− γ(1− b)

√
Var[XT ]

)
,

∂g2(a, b)

∂θ
=

(
−1

θ

(
γ(1− b)

(
E[XT ]− erTX0

)
− γ2(1− b)2 Var[XT ]

))
· g2(a, b)

+ exp

{
−γ(1− b)E[XT ] +

1

2
γ2(1− b)2 Var[XT ]

}
· ϕ

(
a− E[XT ]√

Var[XT ]
+ γ(1− b)

√
Var[XT ]

)
· 1

θ

(
− a− e

rTX0√
Var[XT ]

+ γ(1− b)
√

Var[XT ]

)
,

where ϕ(x) = 1/
√

2πe−x
2/2 denotes the density function of the standard normal

distribution. Finally, the first derivative of the expected utility with respect to θ is

given by

∂EU (1)(θ)

∂θ
=− d

γ

(
exp {γ(1− δpτ)X0}

∂g1(X0, τδp)

∂θ
+ exp {γ(1− λτδl)X0}

∂g2(X0, λτδl)

∂θ

)
− 1− d

γ

(
exp {γ(1− τ)X0}

∂g1(X0, τ)

∂θ
+ exp {γ(1− λτ)X0}

∂g2(X0, λτ)

∂θ

)
.
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This shows that EU (1)(θ) is continuous and differentiable in θ. We can further show

that the expected utility EU (1)(θ) is strictly concave in θ. This then confirms that

there is a unique θ that maximizes EU (1)(θ) on the compact interval [0, X0]. The

optimal θ is either one of the edge points θ = 0 or θ = X0 or is determined such that

∂EU (1)(θ)

∂θ
= 0 . (24)

To show that EU (1)(θ) is strictly concave in θ, we represent the terminal wealth XT in

equation (2) in terms of a standard normal random variable ε as follows.

XT ∼ erTX0 + θ(µ̃+ σ̃ · ε) with µ̃ := (µ− r)
∫ T
0
er(T−s)ds and σ̃ := σ

√∫ T
0
e2r(T−s)ds.

We can then write

g(θ) := EU (1)(θ) = E
[
f
(
erTX0 + θ(µ̃+ σ̃ · ε)

)]
for a function

f(x) :=


d · U

(
(1− δpτ)(x−X0)

)
+ (1− d) · U

(
(1− τ)(x−X0)

)
, x ≥ X0

d · U
(
(1− λδlτ)(x−X0)

)
+ (1− d) · U

(
(1− λτ)(x−X0)

)
, x < X0

(25)

The utility function U(x) = − 1
γ
e−γx is obviously strictly concave implying that f(x) is

also strictly concave for x > X0 and x < X0. Looking at the slope at X = x0, we can

use that the average tax in the profit domain E[τ̃p] does not exceed the average tax in

the loss domain E[τ̃l] to deduce that

f ′(X0−) = d · (1− δpτ) + (1− d) · τ = E[τ̃p]

≤ E[τ̃l] = d · (1− λδlτ) + (1− d) · λ · τ = f ′(X0+) .

This shows that f(x) is strictly concave in x, that is for any x, y ∈ R+ and α ∈ [0, 1], it

holds that: f(αx+ (1− α)y) > α · f(x) + (1− α) · f(y). We can use this to show that
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g(θ) is strictly concave in θ. Choose θ1, θ2 ∈ [0, X0] arbitrary to get

g(αθ1 + (1− α)θ2) = E
[
f
(
erTX0 + (αθ1 + (1− α)θ2)(µ̃+ σ̃ · ε)

)]
= E

[
E
[
f
(
erTX0 + (αθ1 + (1− α)θ2)(µ̃+ σ̃ · ε)

) ∣∣ ε]]
> E

[
E
[
α · f

(
erTX0 + θ1(µ̃+ σ̃ · ε)

)
+ (1− α) · f

(
erTX0 + θ2(µ̃+ σ̃ · ε)

) ∣∣ ε]]
= α · g(θ1) + (1− α) · g(θ2) .

The concavity of the objective function g(θ) in θ proves the uniqueness and existence

of a solution θ∗ of equation (9).

B.4. Expected utility and optimal investment under Procedure 2

For Procedure 2 with the advance tax rule (ATR), we can follow similar derivations as

for Procedure 1 and obtain the expected utility as follows

EU (2)(θ) =− 1

γ
E
[
exp{−γX̃(2)

T }
]

=− 1

γ
eγFE

[
exp{−γ(1− τηp)(XT −X0)} · 1{XT≥X0}

+ exp{−γ(1− λτηl)(XT −X0)} · 1{XT<X0}

]
=− eγF

γ

(
exp{γ(1− τηp)X0} · g1(X0, τηp) + exp{γ(1− λτηl)X0} · g2(X0, λτηl)

)
.

The first derivative of the expected utility with respect to θ is given by

∂EU (2)(θ)

∂θ
=− eγF

γ

(
exp {γ(1− τηp)X0}

∂g1(X0, τηp)

∂θ
+ exp {γ(1− λτηl)X0}

∂g2(X0, λτηl)

∂θ

)
.

The optimal θ∗∗ is either 0, X0 or determined such that

∂EU (2)(θ)

∂θ
= 0 . (26)

We can argue similar to the proof of Proposition 2.1 that there exists a unique solution

θ∗∗ of equation (9).
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Figures

Figure 1: Optimal investment amount θ∗∗ (with ATR, Procedure 2) for different tax rates
and loss offset provisions
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Notes: We choose scenario (1) from Table 1, i.e. r = 0.02, T = 5, X0 = 100, τ = 15%, δp = 4, δl = 1,
d = 0.4, F0 = 0, γ = 0.02. The left graph exemplifies symmetric taxation, i.e. taxation with full loss
offset (ηp = ηl = 1, λ = 1). The right graph exemplifies asymmetric taxation, i.e. loss offset
restrictions of different levels (0 ≤ λ ≤ 1). We choose rate of return on risky investments/risk pairs
(µ, σ2) with identical adjusted Sharpe ratio ASR = 1.777778.
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Figure 2: Optimal investment amount θ∗ (without ATR, Procedure 1) and θ∗∗ (with ATR,
Procedure 2)
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Notes: Procedure 1 is indicated by a dashed line ( θ∗), whereas Procedure 2 is indicated by a solid line
(θ∗∗). We choose scenario (1) from Table 1, i.e. r = 0.02, T = 5, X0 = 100, τ = 15%, δp = 4, δl = 1,
d = 0.4, ηp = 2.2, ηl = 1, F0 = 0, λ = 0.9, γ = 0.02, and a rate of return on risky investments and thus
risk pairs (µ, σ2) with identical adjusted Sharpe ratio ASR = 1.777778.
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Tables

Table 1: Optimal investment amount and certainty equivalents for Procedures 1 and 2 for
slightly restricted loss offset and different levels of risk aversion

Panel A: Optimal investments with a level of risk aversion of γ = 0.03

δp, δl, d, ηp, ηl, F0, τ θ∗ CE(1) θ∗∗ CE(2)

# λ = 0.9, γ = 0.03
(1) (4 .00 , 1.00, 0 .40 , 2 .20 , 1.00, 0.00, 0.15) 62.63 111.40 65.06 111.86
(2) (4 .00 , 1.00, 0 .50 , 2 .50 , 1.00, 0.00, 0.15) 61.91 110.61 64.62 111.08
(3) (4 .00 , 1.00, 0 .60 , 2 .80 , 1.00, 0.00, 0.15) 61.15 109.84 63.94 110.28
(4) (3 .00 , 1.00, 0 .40 , 1 .80 , 1.00, 0.00, 0.15) 64.50 112.67 65.35 112.86
(5) (3 .00 , 1.00, 0 .50 , 2 .00 , 1.00, 0.00, 0.15) 64.32 112.17 65.24 112.36
(6) (3 .00 , 1.00, 0 .60 , 2 .20 , 1.00, 0.00, 0.15) 64.13 111.67 65.06 111.86

Panel B: Optimal investments with a lower level of risk aversion of γ = 0.2

δp, δl, d, ηp, ηl, F0, τ θ∗ CE(1) θ∗∗ CE(2)

# λ = 0.9, γ = 0.02
(1) (4 .00 , 1.00, 0 .40 , 2 .20 , 1.00, 0.00, 0.15) 91.80 113.40 95.34 113.93
(2) (4 .00 , 1.00, 0 .50 , 2 .50 , 1.00, 0.00, 0.15) 90.11 112.39 94.08 112.94
(3) (4 .00 , 1.00, 0 .60 , 2 .80 , 1.00, 0.00, 0.15) 88.31 111.41 92.41 111.92
(4) (3 .00 , 1.00, 0 .40 , 1 .80 , 1.00, 0.00, 0.15) 95.26 115.00 96.52 115.22
(5) (3 .00 , 1.00, 0 .50 , 2 .00 , 1.00, 0.00, 0.15) 94.62 114.35 96.00 114.58
(6) (3 .00 , 1.00, 0 .60 , 2 .20 , 1.00, 0.00, 0.15) 93.96 113.71 95.34 113.93

Notes: We assume different sets of parameters for our numerical analysis as displayed in rows (1)-(6)
including those from our baseline scenario, i.e., a rate of return on the risky investments of µ = 0.06,
risk-free rate r = 0.02, volatility σ = 0.15, an investment horizon T = 5, initial wealth X0 = 100, tax
rate τ = 0.15, a tax loss offset parameter λ = 0.9 for risk aversion at the level of γ = 0.03 (Panel A) or
a lower level of risk aversion of γ = 0.02 (Panel B). The profit and loss tax risk multipliers δp, δl, the
probability of a tax reduction after a post-tax audit d are only relevant for the case without ATR
(columns θ∗ and CE(1)) while the profit and loss tax multipliers under ATR-induced tax certainty ηp,
ηl and the ATR fee F0 are exclusively relevant for the case with ATR (columns θ∗∗ and CE(2)).
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Table 2: Optimal investment amount and certainty equivalents for Procedures 1 and 2
under different loss offset regimes (full or no loss offset)

Panel A: optimal investments without tax loss offset

δp, δl, d, ηp, ηl, F0, τ θ∗ CE(1) θ∗∗ CE(2)

# λ = 0, γ = 0.02
(1) (4 .00 , 1.00, 0 .40 , 2 .20 , 1.00, 0.00, 0.15) 77.83 112.56 80.85 113.01
(2) (4 .00 , 1.00, 0 .50 , 2 .50 , 1.00, 0.00, 0.15) 76.07 111.61 79.42 112.07
(3) (4 .00 , 1.00, 0 .60 , 2 .80 , 1.00, 0.00, 0.15) 74.18 110.68 77.62 111.11
(4) (3 .00 , 1.00, 0 .40 , 1 .80 , 1.00, 0.00, 0.15) 81.18 114.05 82.28 114.24
(5) (3 .00 , 1.00, 0 .50 , 2 .00 , 1.00, 0.00, 0.15) 80.43 113.43 81.63 113.63
(6) (3 .00 , 1.00, 0 .60 , 2 .20 , 1.00, 0.00, 0.15) 79.65 112.82 80.85 113.01

Panel B: optimal investments with a full tax loss offset

δp, δl, d, ηp, ηl, F0, τ θ∗ CE(1) θ∗∗ CE(2)

# λ = 1, γ = 0.02
(1) (4 .00 , 1.00, 0 .40 , 2 .20 , 1.00, 0.00, 0.15) 93.62 113.51 97.23 114.06
(2) (4 .00 , 1.00, 0 .50 , 2 .50 , 1.00, 0.00, 0.15) 91.96 112.49 96.00 113.05
(3) (4 .00 , 1.00, 0 .60 , 2 .80 , 1.00, 0.00, 0.15) 90.17 111.50 94.35 112.03
(4) (3 .00 , 1.00, 0 .40 , 1 .80 , 1.00, 0.00, 0.15) 97.09 115.12 98.37 115.35
(5) (3 .00 , 1.00, 0 .50 , 2 .00 , 1.00, 0.00, 0.15) 96.48 114.47 97.87 114.71
(6) (3 .00 , 1.00, 0 .60 , 2 .20 , 1.00, 0.00, 0.15) 95.83 113.82 97.23 114.06

Notes: We assume different sets of parameters for our numerical analysis as displayed in rows (1)-(6)
including those from our baseline scenario, i.e., a rate of return on the risky investments of µ = 0.06,
risk-free rate r = 0.02, volatility σ = 0.15, an investment horizon T = 5, initial wealth X0 = 100, tax
rate τ = 0.15, risk aversion at the level of γ = 0.02 for either no tax loss offset λ = 0 (Panel A) or full
tax loss offset λ = 1 (Panel B). The profit and loss tax risk multipliers δp, δl, the probability of a tax
reduction after a post-tax audit d are only relevant for the case without ATR (columns θ∗ and CE(1))
while the profit and loss tax multipliers under ATR-induced tax certainty ηp and ηl and the ATR fee
F0 are exclusively relevant for the case with ATR (columns θ∗∗ and CE(2)).
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Table 3: Critical fee levels F ∗
0 for different levels of risk aversion

risk aversion γ = 0.02 γ = 0.03 γ = 0.04 γ = 0.05 γ = 0.06 γ = 0.07 γ = 0.08
F ∗0 0.13 0.11 0.10 0.10 0.10 0.11 0.11

Notes: We use the set of parameters of the baseline scenario, i.e., a rate of return on the risky
investments of µ = 0.06, risk-free rate r = 0.02, volatility σ = 0.15, an investment horizon T = 5,
initial wealth X0 = 100, tax rate τ = 0.15, for various levels of risk aversion γ. We assume profit and
loss tax risk multipliers δp = 3.0 and δl = 0.5 and a probability of a tax reduction after a post-tax
audit of d = 0.2 and a tax loss offset parameter λ = 0.5. We assume profit and loss tax multipliers
under ATR-induced tax certainty ηp = 1.40 and ηl = 0.90.
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Table 4: Critical fee level F ∗∗
0 for different tax rate multipliers

tax rate multiplier F ∗∗0
ηp = 1.30, ηl = 1.00 0.27
ηp = 1.35, ηl = 0.95 0.12
ηp = 1.40, ηl = 0.90 −0.02
ηp = 1.45, ηl = 0.85 −0.16
ηp = 1.50, ηl = 0.80 −0.30
ηp = 1.55, ηl = 0.75 −0.44
ηp = 1.60, ηl = 0.70 −0.58
ηp = 1.65, ηl = 0.65 −0.72
ηp = 1.70, ηl = 0.60 −0.85

Notes: We use the set of parameters of the baseline scenario, i.e., a rate of return on the risky
investment of µ = 0.06, risk-free rate r = 0.02, volatility σ = 0.15, an investment horizon T = 5, initial
wealth X0 = 100, tax rate τ = 0.15, a tax loss offset parameter λ = 0.5 and a level of risk aversion
γ = 0.04. We assume profit and loss tax risk multipliers δp = 3.0 and δl = 0.5 and a probability of a
tax reduction after a post-tax audit of d = 0.2 and a loss offset parameter λ = 0.5. We provide critical
fee levels F ∗∗

0 for various sets of profit and loss tax multipliers under ATR-induced tax certainty ηp
and ηl.
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Table 5: Definition of variables

variable definition
{Bt}t≥0 bond at time t ∈ [0, T ]

CE(1) certainty equivalent (no ATR)

CE(2) certainty equivalent (ATR)
d probability of a tax reduction after a post-tax audit

ER(1)(θ) expected terminal tax revenue (no ATR)

ER(2)(θ) expected terminal tax revenue (ATR)

EU (1)(θ) expected utility (no ATR)

EU (2)(θ) expected utility (ATR)
F = F0e

rT accumulated ATR fee
F0 ATR fee
F ∗0 maximal willingness to pay for an ATR
F ∗∗0 minimal ATR fee
r risk-free rate
rτ interest rate after tax
{St}t≥0 risky project at time t ∈ [0, T ]
T investment horizon
U(X) utility function
{Wt}t≥0 Brownian motion at time t ∈ [0, T ]
X0 initial wealth
XT terminal wealth of the firm at time T

X̃
(1)
T after-tax net payoff (no ATR)

X̃
(2)
T after-tax net payoff (ATR)

δl tax risk multiplier for losses
δp tax risk multiplier for profits
γ risk aversion coefficient
ηl tax rate multiplier for losses under ATR-induced tax certainty
ηp tax rate multiplier for profits under ATR-induced tax certainty
θ amount invested in the risky project
λ tax loss offset parameter
µ rate of return on risky investments
σ asset volatility
τ proportional tax rate for profits and losses
τ̃l stochastic proportional tax rate for losses
τ̃p stochastic proportional tax rate for profits
Φ(x) standard normal distribution function
ϕ(x) standard normal density function

46


	075_Titel
	075



